Signature and Name of Invigilator

1.	(Signature)
	(Name)
2.	(Signature)
	(Name)

OMR Sheet No.:									
(To be filled by the Candidate)									
Roll No.									
•	()	ln fig	ures a	as per	adm	issior	card)	
Roll No.									
(In words)									

D 8 9 1 5

Time : $1\frac{1}{4}$ hours

PAPER - II

ENVIRONMENTAL SCIENCE [Maximum Marks: 100

Number of Pages in this Booklet: 8

Instructions for the Candidates

- 1. Write your roll number in the space provided on the top of this page.
- 2. This paper consists of fifty multiple-choice type of questions.
- 3. At the commencement of examination, the question booklet will be given to you. In the first 5 minutes, you are requested to open the booklet and compulsorily examine it as below:
 - (i) To have access to the Question Booklet, tear off the paper seal on the edge of this cover page. Do not accept a booklet without sticker-seal and do not accept an open booklet
 - (ii) Tally the number of pages and number of questions in the booklet with the information printed on the cover page. Faulty booklets due to pages/questions missing or duplicate or not in serial order or any other discrepancy should be got replaced immediately by a correct booklet from the invigilator within the period of 5 minutes. Afterwards, neither the Question Booklet will be replaced nor any extra time will be given.
 - (iii) After this verification is over, the Test Booklet Number should be entered on the OMR Sheet and the OMR Sheet Number should be entered on this Test Booklet.
- 4. Each item has four alternative responses marked (1), (2), (3) and (4). You have to darken the circle as indicated below on the correct response against each item.

Example: (1) (2) (4) where (3) is the correct response.

- 5. Your responses to the items are to be indicated in the **OMR**Sheet given inside the Booklet only. If you mark your response at any place other than in the circle in the OMR Sheet, it will not be evaluated.
- 6. Read instructions given inside carefully.
- 7. Rough Work is to be done in the end of this booklet.
- 8. If you write your Name, Roll Number, Phone Number or put any mark on any part of the OMR Sheet, except for the space allotted for the relevant entries, which may disclose your identity, or use abusive language or employ any other unfair means, such as change of response by scratching or using white fluid, you will render yourself liable to disqualification.
- 9. You have to return the original OMR Sheet to the invigilators at the end of the examination compulsorily and must not carry it with you outside the Examination Hall. You are however, allowed to carry original question booklet and duplicate copy of OMR Sheet on conclusion of examination.
- 10. Use only Blue/Black Ball point pen.
- 11. Use of any calculator or log table etc., is prohibited.
- 12. There are no negative marks for incorrect answers.

Number of Questions in this Booklet: 50

परीक्षार्थियों के लिए निर्देश

- 1. इस पृष्ठ के ऊपर नियत स्थान पर अपना रोल नम्बर लिखिए।
- 2. इस प्रश्न-पत्र में पचास बहुविकल्पीय प्रश्न हैं।
- 3. परीक्षा प्रारम्भ होने पर, प्रश्न-पुस्तिका आपको दे दी जायेगी। पहले पाँच मिनट आपको प्रश्न-पुस्तिका खोलने तथा उसकी निम्नलिखित जाँच के लिए दिये जायेंगे, जिसकी जाँच आपको अवश्य करनी है:
 - (i) प्रश्न-पुस्तिका खोलने के लिए पुस्तिका पर लगी कागज की सील को फाड़ लें। खुली हुई या बिना स्टीकर-सील की पुस्तिका स्वीकार न करें।
 - (ii) कवर पृष्ठ पर छपे निर्देशानुसार प्रश्न-पुस्तिका के पृष्ठ तथा प्रश्नों की संख्या को अच्छी तरह चैक कर लें कि ये पूरे हैं। दोषपूर्ण पुस्तिका जिनमें पृष्ठ/प्रश्न कम हों या दुबारा आ गये हों या सीरियल में न हों अर्थात किसी भी प्रकार की त्रुटिपूर्ण पुस्तिका स्वीकार न करें तथा उसी समय उसे लौटाकर उसके स्थान पर दूसरी सही प्रश्न-पुस्तिका ले लें। इसके लिए आपको पाँच मिनट दिये जायेंगे। उसके बाद न तो आपको प्रश्न-पुस्तिका वापस ली जायेगी और न ही आपको अतिरिक्त समय दिया जायेगा।
 - (iii) इस जाँच के बाद प्रश्न-पुस्तिका का नंबर OMR पत्रक पर अंकित करें और OMR पत्रक का नंबर इस प्रश्न-पुस्तिका पर अंकित कर दें।
- 4. प्रत्येक प्रश्न के लिए चार उत्तर विकल्प (1), (2), (3) तथा (4) दिये गये हैं। आपको सही उत्तर के वृत्त को पेन से भरकर काला करना है जैसा कि नीचे दिखाया गया है।

उदाहरण : ① ② ● ④ जबिक (3) सही उत्तर है।

- प्रश्नों के उत्तर केवल प्रश्न पुस्तिका के अन्दर दिये गये OMR पत्रक पर ही अंकित करने हैं। यदि आप OMR पत्रक पर दिये गये वृत्त के अलावा किसी अन्य स्थान पर उत्तर चिन्हांकित करते हैं, तो उसका मूल्यांकन नहीं होगा।
- अन्दर दिये गये निर्देशों को ध्यानपूर्वक पहें।
- 7. कच्चा काम (Rough Work) इस पुस्तिका के अन्तिम पृष्ठ पर करें।
- 3. यदि आप OMR पत्रक पर नियत स्थान के अलावा अपना नाम, रोल नम्बर, फोन नम्बर या कोई भी ऐसा चिह्न जिससे आपकी पहचान हो सके, अंकित करते हैं अथवा अभद्र भाषा का प्रयोग करते हैं, या कोई अन्य अनुचित साधन का प्रयोग करते हैं, जैसे कि अंकित किये गये उत्तर को मिटाना या सफेद स्याही से बदलना तो परीक्षा के लिये अयोग्य घोषित किये जा सकते हैं।
- 9. आपको परीक्षा समाप्त होने पर मूल OMR पत्रक निरीक्षक महोदय को लौटाना आवश्यक है और परीक्षा समाप्ति के बाद उसे अपने साथ परीक्षा भवन से बाहर न लेकर जायें। हालांकि आप परीक्षा समाप्ति पर मूल प्रश्न-पुस्तिका तथा OMR पत्रक की डुप्लीकेट प्रति अपने साथ ले जा सकते हैं।
- 10. केवल नीले/काले बाल प्वाईंट पेन का ही इस्तेमाल करें।
- 11. किसी भी प्रकार का संगणक (कैलकुलेटर) या लाग टेबल आदि का प्रयोग वर्जित है।
- 12. गलत उत्तरों के लिए कोई नकारात्मक अंक नहीं हैं।

D-8915 1 P.T.O.

ENVIRONMENTAL SCIENCE PAPER - II

Note: This paper contains **fifty (50)** objective type questions of **two (2)** marks each. **All** questions are **compulsory**.

1.

Which one of the following elements contributes maximum to the earth crust by weight?

	(1)	Iron	(2)	Silicon		(3)	Oxygen	(4)	Carbon
2.	The l (1)	owest temperatur Troposphere	re is o (2)	bserved in v Stratospher		layer (3)	of the atmosphe Mesosphere	ere ? (4)	Thermosphere
3.	Whic	th of the following	g gase (2)	es has the lov N ₂ O	west 1	resider (3)	nce time ? CFCs	(4)	CH_4
4.	 Which of the following statement is incorrect? (1) Chromium (VI) is highly toxic (2) Methyl mercury is most toxic mercury species (3) Arsenic (III) is more toxic than arsenic (V) (4) Cadmium is a criteria pollutant 								
5.	The 1 (1) (3)	most abundant fu Peptide group Phenolic group	nctior		esent (2) (4)	Carb	vic acid, commo oxylate group no group	nly fou	and in soils, is :
6.	The s (1) (3)	source of Stratosp Atmospheric N ₂ Tropospheric No			(2) (4)	-	ospheric N ₂ O ospheric NO ₂		
7.	In tro	oposphere, which $O(^{1}D) + H_{2}O$	of the (2)		•	sses d (3)	oes not generate HCHO+hv	hydro (4)	oxyl radical ? HNO ₂ + hv
8.	The 1 (1)	The most common form of lead present in pesticide is: 1) Lead acetate (2) Lead arsenate (3) Lead azide (4) Lead telluride							Lead telluride
9.	Consider the following four statements about benzo[a]pyrene: (a) It is a group 1 carcinogen (b) It is a polycyclic aromatic hydrocarbon (c) Its molecular formula is C ₂₀ H ₁₂ (d) It has four benzene rings Choose the correct code: (1) (a) and (b) only (2) (a), (b) and (c) only (3) (b), (c) and (d) only (4) (a), (b), (c) and (d)								
D-8915 2 Pa									

10.	Reas Asse Reas	son (R): ertion (A): Rads son (R): All i	on is a inert g	in inert gas ases are ra	and it	is ra	, ,) and th	e other labelled as		
	Choose the correct answer: (1) Both (A) and (R) are correct and (R) is the correct explanation of (A) . (2) Both (A) and (R) are correct and (R) is not the correct explanation of (A) . (3) (A) is true, but (R) is false. (4) (A) is false, but (R) is true.										
11.	Mos (1)	t of Epiphytes are Mutualism		ples of typ Coevoluti		otic i (3)	nteractions calle Commensalis		Parasitism		
12.	Inha (1) (3)	llation of airborne Bronchitis Cardiac conges		spore lead	ls to di (2) (4)	Alle		s:			
13.	(a) (b) (c)	ogical diversity is Latitude Longitude Distance from s ose the correct an (a) only	sea	:		(3)	(b) and (c) on	ly (4)	(a), (b) and (c)		
14.		ability of a living urbance is known		n to be resto	ored th	ıroug	n secondary suc	ccession	after a more severe		
	(1)	Rehabilitation	(2)	Resistance	e	(3)	Resilience	(4)	Restoration		
15.	The (1)	characteristic fea low rate	ture of (2)	f the backg fast rate	round	extin (3)	ction is disappo lapse rate	earance (4)	of a species at a : intrinsic rate		
16.	Speciation means: (1) Natural process of extinction of different species (2) Artificial process of extinction of different species (3) One species splits into two or more different species naturally (4) Characterisation of different species										
17.	(a) (b) (c) (d)	ological modelling Spatial data Attribute data Physico - chemic Species richness ose the correct co (a) and (b) only (a), (b) and (c) o	ical da s data ode :	J	(2) (4)	(b) a	of functions in o and (c) only (b), (c) and (d)	GIS to p	rocess :		
D-89	915				3				Paper-II		

18.	8. A rock body or formation which may be porous enough to hold enough quantity of water but which by virtue of its other properties does not allow an easy and quick flow through it, is called:									
	(1)	Aquitard	(2)	Aquifuge		(3)	Aquiclude	(4)	Aquifer	
19.			rim o			, ,				
20.	Inve	rsion that occurs	near l	Earth's Surf	ace is	callec	d:			
	(1)	Radiation invers			(2)		ectional inversio			
	(3)	Subsidence inve	rsion		(4)	Colc	l - air - drainage	invers	ion	
21.	The is cal		tted p	er unit solic	d angle	e in a	specified direction	on by a	unit area of source	
	(1)	irradiance	(2)	radiance		(3)	exitance	(4)	radiant flux	
22.	Mean residence time of soil organic matter in an ecosystem is maximum in : (1) Tropical rain forest (2) Boreal forest (3) Temperate coniferous forest (4) Dry deciduous forest							in :		
23.	Wors	st affected area b	v Indi	an Ocean T	'sunan	ni of I	December 2004 i	n India	a was :	
	(1)	Andaman and I	•		(2)		il Nadu			
	(3)	Andhra Pradesl	n		(4)	Odis	sha			
24.	15% ~1 e'	of the photons ca V, the short circuit	use el it curr	ectron - hol ent of the c	e pair	s and	the average ene	rgy of i	ea 100 cm ² . If only incident photons is	
	(1)	1.2 A	(2)	1.5 A		(3)	1.6 A	(4)	1.8 A	
25.			_		esour		· ·		ectly responsible?	
	(1)	Wind	(2)	Biomass		(3)	OTEC	(4)	Tidal	
26.	 In terms of the calorific value, identify the correct sequence: (1) Methane > hydrogen > ethanol > methanol (2) Hydrogen > methane > ethanol > methanol (3) Methane > hydrogen > methanol > ethanol (4) Hydrogen > ethanol > methanol 									
27.		given location the		_	_		•	ange 6	to 6.4 m/s. This	
	(1)	Fair	(2)	Good		(3)	Excellent	(4)	Outstanding	
D-89	D-8915 4 Paper-II									

28.	Whi	ch of the followin 235 U	g nuc (2)	lides does not un 238 U	dergo (3)	fission with low 239 Pu	energy (4)	y (slow) neutrons ? 233 U	
29.	Acco	_	stand	lards, the annua	l ave	rage concentrati	on of	PM _{2.5} should not	
		60 μg m ⁻³	(2)	$40~\mu g~m^{-3}$	(3)	$80~\mu g~m^{-3}$	(4)	$100~\mu g~m^{-3}$	
30.	Whi(1) (3)	ch of the followin Pollens Sodium Chlorid	C	secondary aerose (2) (4)	Viru	ıs monium Sulphat	e		
31.		ne colorimetric de ne colored comple 550 nm			_	-		-	
32.		ealthy human ear	r, befo	ore experiencing	pain,	can detect sound	d press	sure levels as high	
	as : (1)	50 Pa	(2)	100 Pa	(3)	200 Pa	(4)	1000 Pa	
33.	The (1)	resultant of two r ~ 80 dB	noise] (2)				(4)	~ 130 dB	
34.	The (1)	half life of radioa 30 years	ctive (2)		(3)	5 years	(4)	8 years	
35.	Which of the following best describes the function of the environmental management plan as a part of the environmental statement? (1) It describes the environmental impacts of the proposal. (2) It describes the baseline environmental data. (3) It describes the project proposal in detail. (4) It describes the actions and auditing procedures needed.								
36.	India submitted its INDCs related to climate change to the UN recently. What does INDCs stand for ? (1) Intended Nationally Devoted Contributions (2) Intended Nationally Determined Contributions (3) Intended Notified Decisive Contributions (4) India's Nationally Determined Contributions								
37.		nal EIA became an he first time in :	n integ	gral part of Enviro	onmer	ntal Management	in Ind	ia by a Notification	
	(1)	1988	(2)	1990	(3)	1992	(4)	1994	
D-8	D-8915 Paper-II								

D-89	915				6				Рар	er-II
	(1)	F - test	(2)	Z - test		(3)	t - test	(4)	x^2 - text	
46.	_	arametric test gen	nerally	used to co	ompar	e san	nple variance to	a theo	oretical popu	lation
45.	Whie (1) (3)	ch one of the follo Convenience pr Cluster	_	-	babilit (2) (4)	•	tified			
44.	diffe	a bi-variate samperent from zero at ne sample ? 43								
43.		ch one of the follo te effectively ? Open incinerati Sanitory landfil	on	methods co	(2) (4)	Plas	mposed liquid on the second maincineration emidiation		hazardous or	rganic
42.		ording to MOEF ronment friendly ed : 20 ppm		ct, the pres			ride (F) in tooth	paste/	powder shou	
41.		ording to Wildlife t rogue animals ? Chief Minister of Conservator of	of the S	State	(2) (4)	Chie	no is the author of Wildlife ward uty Commission	len	ssue permiss	ion to
40.	The (1) (2) (3) (4)	Vienna Conventional transfer of Og Biodiversity cor Preservation of	nde in 3 layer 1servat	endangered	d spec					
39.	A m (1)	oist air parcel at 2 ~ 25.81°C		as a mixing ~ 20.68°C		of 10 (3)		irtual te		3:
	` '	ose the correct ar (a) only	iswer			(3)	(b) and (c) onl	y (4)	(a), (b) and	(c)
	(b) (c)	Environmental in There is growing	impact	ts of develo	pmen	t are i	n public interes	st		
38.	EIA (a)	is necessary beca Development is		ood for env	ironm	ont				

From a random sample of 36 fish caught in a sample, the mean length (\overline{X}) and sample **47.** standard deviation (sd) were found to be 30 cm and 6 cm respectively. If at 95% confidence level z is 1.96, then the mean length of fish in this population is in the range :

27 < X < 33

(2)

27.5 < X < 32.5 (3) 24 < X < 36

28.04 < X < 32(4)

48. One of the natural causes of occurrence of inland soil alkalinity is the presence of:

Sodium hypochlorite

Potassium nitrate (2)

Sodium chloride (3)

(4) Sodium carbonate

The Supreme Court of India directed the government to implement environmental education 49. in all educational institutions as compulsory subject in:

1976 (1)

(2) 2003

1988 (3)

(4) 2014

50. Organic wetland soils have:

high cation capacity

(2) high bulk density

low porosity (3)

high nutrient availability (4)

- o 0 o -

Space For Rough Work