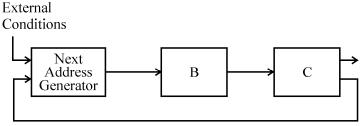
PAPER-III

	COMPUTER SCIENCE	Eð	& APPLICATIONS								
Sig	nature and Name of Invigilator										
1.	(Signature)	OMR Sheet No.:									
	(Name)	(To be filled by the Candidate)									
2.	(Signature)	R	oll No.								
	(Name)		(In figures as per admission card)								
		R	oll No								
	JA 0 8 7 1 7		(In words)								
Tin	ne : 2 ¹ / ₂ hours]		[Maximum Marks : 150								
Nu	mber of Pages in this Booklet: 16		Number of Questions in this Booklet: 75								
	Instructions for the Candidates		परीक्षार्थियों के लिए निर्देश								
	Write your roll number in the space provided on the top of	1.	इस पृष्ठ के ऊपर नियत स्थान पर अपना रोल नम्बर लिखिए ।								
	this page. This paper consists of seventy five multiple-choice type of	2.	इस प्रश्न-पत्र में पचहत्तर बहुविकल्पीय प्रश्न हैं । परीक्षा प्रारम्भ होने पर, प्रश्न-पुस्तिका आपको दे दी जायेगी । पहले								
	questions.	3.	परिक्षा प्रारम्भ होने पर, प्रश्न-पुस्तिका आपका द दो जावगा । पहल पाँच मिनट आपको प्रश्न-पुस्तिका खोलने तथा उसकी निम्नलिखित								
	At the commencement of examination, the question booklet will be given to you. In the first 5 minutes, you are requested		जाँच के लिए दिये जायेंगे. जिसकी जाँच आपको अवश्य करनी है :								
	to open the booklet and compulsorily examine it as below:		(i) प्रश्न-पुस्तिका खोलने के लिए पुस्तिका पर लगी कागज की सील को फाड़ लें। खुली हुई या बिना स्टीकर-सील की पुस्तिका								
	(i) To have access to the Question Booklet, tear off the paper		का फाड़ ल । खुला हुई या बिना स्टाकर-साल का पुस्तिका स्वीकार न करें ।								
	seal on the edge of this cover page. Do not accept a booklet without sticker-seal and do not accept an open booklet.		(ii) कवर पुष्ठ पर छपे निर्देशानसार प्रश्न-पस्तिका के पुष्ठ तथा								
	(ii) Tally the number of pages and number of questions in		प्रश्नों की संख्या को अच्छी तरह चैक कर लें कि ये पुरे								
	the booklet with the information printed on the cover		हैं । दोषपूर्ण पुस्तिका जिनमें पृष्ठ/प्रश्न कम हों या दुबारा औ गये हों या सीरियल में न हो अर्थात किसी भी प्रकार की								
	page. Faulty booklets due to pages/questions missing or duplicate or not in serial order or any other		गुंव हा या सारियल में ने हा अथात किसा मा प्रकार का जुटिपूर्ण पुस्तिका स्वीकार नू करें तथा उसी समय उसे								
	discrepancy should be got replaced immediately by a		लौटाकेंर उसके स्थान पर दूसरी सही प्रश्न-पुस्तिका ले लें ।								
	correct booklet from the invigilator within the period of 5 minutes. Afterwards, neither the Question Booklet		इसके लिए आपको पाँच मिनट दिये जायेंगे । उसके बाद न								
	will be replaced nor any extra time will be given.		तो आपको प्रश्न-पुस्तिका वापस ली जायेगी और न ही आपको अतिरिक्त समय दिया जायेगा ।								
	(iii) After this verification is over, the Test Booklet Number		(iii) इस जाँच के बाद प्रश्न-पुस्तिका का नंबर OMR पत्रक पर अंकित करें								
	should be entered on the OMR Sheet and the OMR		और OMR पत्रक का नेंबर इस प्रश्न-पुस्तिका पर अंकित कर दें ।								
	Sheet Number should be entered on this Test Booklet. (iv) The test booklet no. and OMR sheet no. should be same.		(iv) प्रश्न पुस्तिका नं. और OMR पत्रक नं. समान होने चाहिए । यदि								
	In case of discrepancy in the number, the candidate should		नंबर भिन्न हों, तो परीक्षार्थी प्रश्न-पुस्तिका / OMR पत्रक बदलने के लिए निरीक्षक को तुरंत सूचित करें ।								
	immediately report the matter to the invigilator for	4.	प्रत्येक प्रश्न के लिए चार् उत्तर विकल्प (1), (2), (3) तथा (4) द्ये गये								
4	replacement of the test booklet / OMR Sheet. Each item has four alternative responses marked (1), (2), (3)	''	हैं। आपको सही उत्तर के वृत्त को पेन से भरकर काला करना है जैसा								
	and (4). You have to darken the circle as indicated below on		कि नीचे दिखाया गया है :								
	the correct response against each item.		उदाहरण : (1) (2) ् ● (4)								
	Example: \bigcirc \bigcirc \bigcirc \bigcirc	١.	जबिक (3) सही उत्तर है।								
	where (3) is the correct response. Your responses to the items are to be indicated in the OMR	5.	प्रश्नों के उत्तर केवल प्रश्न पुस्तिका के अन्दर दिये गये OMR पत्रक पर ही अंकित करने हैं। यदि आप OMR पत्रक पर दिये गये वृत्त के अलावा किसी अन्य								
٥.	Sheet given inside the Booklet only. If you mark your		स्थान पर उत्तर चिह्नांकित करते हैं, तो उसका मूल्यांकन नहीं होगा ।								
	response at any place other than in the circle in the OMR	6.	अन्दर दिये गये निर्देशों को ध्यानपूर्वक पढ़ें ।								
	Sheet, it will not be evaluated. Read instructions given inside carefully.	7.	कच्चा काम (Rough Work) इस पुस्तिका के अन्तिम पृष्ठ पर करें ।								
	Rough Work is to be done in the end of this booklet.	8.	यदि आप OMR पंत्रक पर नियत स्थान के अलावा अपना नाम, रोल								
	If you write your Name, Roll Number, Phone Number or put		नम्बर, फोन नम्बर या कोई भी ऐसा चिह्न जिससे आपकी पहचान हो सके, अंकित करते हैं अथवा अभद्र भाषा का प्रयोग करते हैं, या कोई								
	any mark on any part of the OMR Sheet, except for the space		अन्य अनुचित साधन का प्रयोग करते हैं, जैसे कि अंकित किये गये								
	allotted for the relevant entries, which may disclose your identity, or use abusive language or employ any other unfair		उत्तर को मिटाना या सफेद स्याही से बदलना तो परीक्षा के लिये								
	means, such as change of response by scratching or using		अयोग्य घोषित किये जा ्सकते हैं ।								
	white fluid, you will render yourself liable to disqualification.	9.	आपको परीक्षा समाप्त होने पर मूल OMR पत्रक निरीक्षक महोदय को								
	You have to return the Original OMR Sheet to the invigilators at the end of the examination compulsorily and must not		लौटाना आवश्यक है और परीक्षा समाप्ति के बाद उसे अपने साथ परीक्षा भवन से बाहर न लेकर जायें । हालांकि आप परीक्षा समाप्ति पर मूल प्रश्न-पुस्तिका								
	carry it with you outside the Examination Hall. You are,	l	अपने साथ ले जा सकते हैं।								
	however, allowed to carry original question booklet on conclusion of examination.		काले बाल प्वाईट पेन का ही इस्तेमाल करें ।								
	Use only Black Ball point pen.	11.	किसी भी प्रकार का संगणक (कैलकुलेटर) या लाग टेबल आदि का								
11.	Use of any calculator or log table etc., is prohibited.	, ,	प्रयोग वर्जित है।								
12.	There is no negative marks for incorrect answers.	12.	गलत उत्तरों के लिए कोई नकारात्मक अंक नहीं हैं ।								

1 P.T.O.


COMPUTER SCIENCE & APPLICATIONS PAPER – III

Note: This paper contains **seventy five (75)** objective type questions of **two (2)** marks each. **All** questions are compulsory.

- 1. Which of the following is an interrupt according to temporal relationship with system clock?
 - (1) Maskable interrupt
- (2) Periodic interrupt

(3) Division by zero

- (4) Synchronous interrupt
- **2.** Which of the following is incorrect for virtual memory?
 - (1) Large programs can be written
 - (2) More I/O is required
 - (3) More addressable memory available
 - (4) Faster and easy swapping of process
- **3.** The general configuration of the microprogrammed control unit is given below :

Next Address Information

What are blocks B and C in the diagram respectively?

- (1) Block address register and cache memory
- (2) Control address register and control memory
- (3) Branch register and cache memory

ii

i

- (4) Control address register and random access memory
- **4.** Match the following :

(4)

iv

iii

Addressing Mode Location of operand **Implied** i. Registers which are in CPU a. **Immediate** ii. Register specifies the address of the operand. b. Specified in the register Register c. iii. Register Indirect Specified implicitly in the definition of instruction d. iv. **Codes:** d b c a ii (1) iv iii i (2) iv i iii ii (3) ii i iii iv

5.	In 8085 microprocessor, the digit 5 indicates that the microprocessor needs											
	(1)	−5 volts, +5 volts supply	(2)	+5 volts supply only								
	(3)	−5 volts supply only	(4)	5 MHz clock								
6.	In 80	085, which of the following perfo	orms : lo	ad register pair immediate operation ?								
	(1)	LDAX rp	(2)	LHLD addr								
	(3)	LXI rp, data	(4)	INX rp								
7.	Consider following schedules involving two transactions:											
	S_1 :	$r_1(X); r_1(Y); r_2(X); r_2(Y); w_2(Y);$	$w_1(X)$									
	S_2 :	$r_1(X); r_2(X); r_2(Y); w_2(Y); r_1(Y);$	$w_1(X)$									
	Whi	ch of the following statement is t	rue ?									
	(1)	Both S_1 and S_2 are conflict serial	alizable.									
	(2)	S ₁ is conflict serializable and S ₂	is not c	conflict serializable.								
	(3)	S ₁ is not conflict serializable an	dS_2 is d	conflict serializable.								
	(4)	•										
8.	Which one is correct w.r.t. RDBMS?											
	(1)) primary key ⊆ super key ⊆ candidate key										
	(2)	primary $key \subseteq candidate \ key \subseteq super \ key$										
	(3)	super $key \subseteq candidate \ key \subseteq primary \ key$										
	(4)	super key \subseteq primary key \subseteq candidate key										
9.	Let $pk(R)$ denotes primary key of relation R. A many-to-one relationship that exists between two relations R_1 and R_2 can be expressed as follows:											
	(1)	$pk(R_2) \rightarrow pk(R_1)$	(2)	$pk(R_1) \rightarrow pk(R_2)$								
	(3)	$\mathrm{pk}(\mathrm{R}_2) \to \mathrm{R}_1 \cap \mathrm{R}_2$	(4)	$pk(R_1) \to R_1 \cap R_2$								
10.	For a database relation R(A, B, C, D) where the domains of A, B, C and D include only atomic values, only the following functional dependencies and those that can be inferred from them are:											
	$A \rightarrow C$											
	$B \rightarrow$	$B \to D$										
	The relation R is in											
	(1)	First normal form but not in sec	ond nor	mal form.								
	(2)	Both in first normal form as we										
	(3)	Second normal form but not in										
	(4)	Both in second normal form as	well as i	in third normal form.								

11. Consider the following relation :

Works (emp_name, company_name, salary)

Here, emp_name is primary key.

Consider the following SQL query

Select emp_name

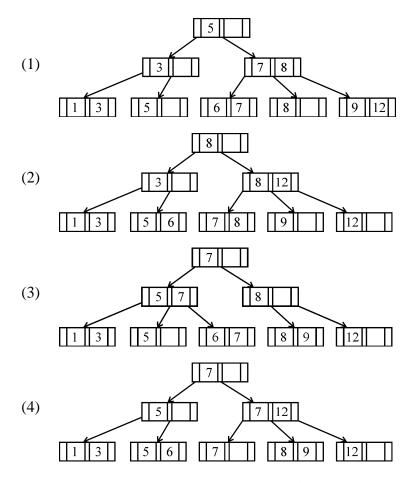
From works T

where salary > (select avg (salary)

from works S

where T.company _ name =

S.company _ name)


The above query is for following:

- (1) Find the highest paid employee who earns more than the average salary of all employees of his company.
- (2) Find the highest paid employee who earns more than the average salary of all the employees of all the companies.
- (3) Find all employees who earn more than the average salary of all employees of all the companies.
- (4) Find all employees who earn more than the average salary of all employees of their company.

12. If following sequence of keys are inserted in a B+ tree with K(=3) pointers:

8, 5, 1, 7, 3, 12, 9, 6

Which of the following shall be correct B+ tree?

Paper-III 4 JA-087-17

13. Which of the following statement(s) is/are correct?
--

- (1) Persistence is the term used to describe the duration of phosphorescence.
- (2) The control electrode is used to turn the electron beam on and off.
- (3) The electron gun creates a source of electrons which are focussed into a narrow beam directed at the face of CRT.
- (4) All of the above
- **14.** A segment is any object described by GKS commands and data that start with CREATE SEGMENT and Terminates with CLOSE SEGMENT command. What functions can be performed on these segments?
 - (1) Translation and Rotation
 - (2) Panning and Zooming
 - (3) Scaling and Shearing
 - (4) Translation, Rotation, Panning and Zooming
- **15.** Match the following:
 - a. Glass
- i. Contains liquid crystal and serves as a bonding surface for a conductive coating.
- b. Conductive coating ii. Acts as a conductor so that a voltage can be applied across the liquid crystal.
- c. Liquid crystal
- iii. A substance which will polarize light when a voltage is applied to it.
- d. Polarized film
- iv. A transparent sheet that polarizes light.

Codes:

- a b c d
- (1) i ii iii iv
- (2) i iii ii iv
- (3) iv iii ii i
- (4) iv ii i iii
- **16.** Below are the few steps given for scan-converting a circle using Bresenham's Algorithm. Which of the given steps is not correct?
 - (1) Compute d = 3 2r (where r is radius)
 - (2) Stop if x > y
 - (3) If d < 0, then d = 4x + 6 and x = x + 1
 - (4) If $d \ge 0$, then d = 4 * (x y) + 10, x = x + 1 and y = y + 1
- 17. Which of the following is/are side effects of scan conversion?
 - a. Aliasing
 - b. Unequal intensity of diagonal lines
 - c. Overstriking in photographic applications
 - d. Local or Global aliasing
 - (1) a and b

(2) a, b and c

(3) a, c and d

- (4) a, b, c and d
- 18. Consider a line AB with A = (0, 0) and B = (8, 4). Apply a simple DDA algorithm and compute the first four plots on this line.
 - (1) [(0,0),(1,1),(2,1),(3,2)]
- (2) [(0, 0), (1, 1.5), (2, 2), (3, 3)]
- (3) [(0, 0), (1, 1), (2, 2.5), (3, 3)]
- $(4) \quad [(0,0),(1,2),(2,2),(3,2)]$

19.	Which	of the	following	are not	regular?

- (A) Strings of even number of a's.
- (B) Strings of a's, whose length is a prime number.
- (C) Set of all palindromes made up of a's and b's.
- (D) Strings of a's whose length is a perfect square.
- (A) and (B) only (1)

(A), (B) and (C) only

(3) (B), (C) and (D) only (4) (B) and (D) only

Consider the languages $L_1 = \phi$ and $L_2 = \{1\}$. Which one of the following represents 20.

$$L_1^* \cup L_2^* L_1^*$$
?

 $(1) \in$

(2) $\{ \in, 1 \}$

(3) φ (4) 1*

21. Given the following statements:

- A class of languages that is closed under union and complementation has to be closed under intersection.
- A class of languages that is closed under union and intersection has to be closed (B) under complementation.

Which of the following options is correct?

- Both (A) and (B) are false. (1)
- (2) Both (A) and (B) are true.
- (3) (A) is true, (B) is false.
- (4) (A) is false, (B) is true.

22. Let G = (V, T, S, P) be a context-free grammar such that every one of its productions is of the form $A \to v$, with |v| = K > 1. The derivation tree for any $W \in L(G)$ has a height h such that

$$(1) \quad \log_{K} |W| \le h \le \log_{K} \left(\frac{|W| - 1}{K - 1} \right) \qquad (2) \quad \log_{K} |W| \le h \le \log_{K} (K|W|)$$

(2)
$$\log_{\mathbf{K}} |\mathbf{W}| \le \mathbf{h} \le \log_{\mathbf{K}} (\mathbf{K} |\mathbf{W}|)$$

(3)
$$\log_{K} |W| \le h \le K \log_{K} |W|$$

$$(3) \quad \log_{K} \left| W \right| \leq h \leq K \log_{K} \left| W \right| \qquad \qquad (4) \quad \log_{K} \left| W \right| \leq h \leq \left(\frac{\left| W \right| - 1}{K - 1} \right)$$

23. Given the following two languages:

$$L_1 = \{a^n \ b^n \ | \ n \ge 0, \ n \ne 100\}$$

$$L_2 = \{w \in \{a, b, c\}^* | \ n_a(w) = n_b(w) = n_c(w)\}$$

Which of the following options is correct?

- Both L_1 and L_2 are not context free language
- (2) Both L_1 and L_2 are context free language.
- L₁ is context free language, L₂ is not context free language.
- L₁ is not context free language, L₂ is context free language.
- 24. A recursive function h, is defined as follows:

$$h(m) = k$$
, if $m = 0$
= 1, if $m = 1$
= $2 h(m - 1) + 4h(m - 2)$, if $m \ge 2$

If the value of h(4) is 88 then the value of k is:

(1) 0 (2) 1

(3) 2 (4) -1

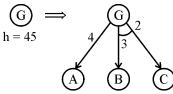
25.	probability P in each time slot. The probability that only one station transmits in a given slot is							
		$nP(1-P)^{n-1}$ $P(1-P)^{n-1}$	(2) (4)	$nP \\ n^P (1-P)^{n-1}$				
26.	proto	ocol. The round trip delay betwee	n A a	messages to station B using sliding window and B is 40 milliseconds and the bottleneck 64 kbps. The optimal window size of A is				
	(1) (3)	20 30	(2) (4)	10 40				
27.		fied by $G(x)$ to correct odd number $(1 + x)$ is factor of $G(x)$	ed erro	(1-x) is factor of $G(x)$				
28.		<u>.</u>	_	e size is 48 bytes and each packet contains a I to transmit the message, the packet size is				
	(1) (3)	2 bytes 4 bytes	(2) (4)	1 byte 5 bytes				
29.	(d, n and o	a) are public and private keys responsible $\phi(n) = (p-1)(q-1)$. The charge of the following equations represent the control of the following equations are presented by the control of the	ectivel	= $p * q$ where p and q are primes. (e, n) and y. Let M be an integer such that $o < M < n$ SA public key cryptosystem? $ed \equiv 1 \pmod{n}$				
	III.	$M \equiv (C)^{d} \pmod{n}$ $ed \equiv 1 \pmod{\phi(n)}$	IV.	$C \equiv M^{e}(\text{mod } \phi(n))$ $M \equiv C^{d}(\text{mod } \phi(n))$				
	Cod	es:						
	(1) (3)	I and II II and III	(2) (4)	I and III I and IV				
30.	 A node X on a 10 Mbps network is regulated by a token bucket. The token bucket is filled at a rate of 2 Mbps. Token bucket is initially filled with 16 megabits. The maximum duration taken by X to transmit at full rate of 10 Mbps is secs. (1) 1 (2) 2 							
	(3)	3	(4)					
31.		asymptotic upper bound solution of	f the re	ecurrence relation given by				
		$=2T\left(\frac{n}{2}\right)+\frac{n}{\lg n} \text{ is :}$						
		O(n ²) O(n lg lg n)		O(n lg n) O(lg lg n)				
32.	Any	decision tree that sorts n elements	has he	ight				
	(1)	$\Omega(\lg n)$	(2)	$\Omega(n)$				
	(3)	$\Omega(n \lg n)$	(4)	$\Omega(n^2)$				
JA-0	87-17	1	7	Paper-III				

33. Red-black trees are one of many search tree schemes that are "balanced" in ord guarantee that basic dynamic-set operations take time in the worst case.												
	(1) (3)	O(1) O(n)			•	•	(2) (4)	O(lg n) O(n lg n)				
34.	. The minimum number of scalar multi							tiplication required, for parenthesization of a matri nensions for four matrices is <5, 10, 3, 12, 5> is (2) 580 (4) 405				
35.	Dijkstra's algorithm is based on (1) Divide and conquer paradigm (3) Greedy Approach							•	programming ing paradigm			
36.	Mato	the t		wing v L ist –		spect to alg	gorithm	paradigms List				
	a.	Merg					i.	•	programming			
	b.			coding	_		ii.	Greedy ap	-			
	c.	-	_		-	gulation	iii. ·		d conquer			
	d. Code		et sur	n pro	biem		iv.	Back trac	King			
	Cou	a	b	c	d							
	(1)	iii	i	ii	iv							
	(2)	ii	i	iv	iii							
	(3)	ii	i	iii	iv							
	(4)	iii	ii	i	iv							
37.									at the following two statements? In does without considering the			
38.	Give 13	n the a	array 27	$\frac{\text{of int}}{2}$	egers 'a	array' show		ow:				
			he output of the following JAVA statements?									
		int [] $p = \text{new int } [10]$;										
int $[]$ q = new int $[10]$;												
		for (i			< 10; k array []	,						
		q = p	_	rJ	<i>j</i> [2	J?						
		p[4] :										
		-		ıt.prin	tln(arra	ay [4] + ":"	' + q[4]);				
	(1)	20:2					(2)	18:18				
	(3)	18:2	20				(4)	20:18				

```
Consider the following JAVA program:
39.
     public class First {
           public static int CBSE (int x) {
                     if (x < 100) x = CBSE (x + 10);
                     return (x-1);
           public static void main (String[] args){
                System.out.print(First.CBSE(60));
           }
     }
     What does this program print?
     (1)
           59
                                            (2)
                                                 95
     (3)
           69
                                           (4)
                                                 99
40.
     Which of the following statement(s) with regard to an abstract class in JAVA is/are TRUE?
     I.
           An abstract class is one that is not used to create objects.
     II.
           An abstract class is designed only to act as a base class to be inherited by other
           classes.
           Only I
     (1)
                                           (2)
                                                 Only II
     (3)
          Neither I nor II
                                           (4)
                                                 Both I and II
41.
     Which of the following HTML code will affect the vertical alignment of the table content?
            Text Here 
     (1)
            Text Here 
     (2)
     (3)
            Text Here 
            Text Here 
     (4)
42.
     What can you say about the following statements?
           XML tags are case-insensitive.
     I.
     II.
           In JavaScript, identifier names are case-sensitive.
     III.
          Cascading Style Sheets (CSS) cannot be used with XML.
     IV.
          All well-formed XML documents must contain a document type definition.
                                                 only III and IV are false.
     (1)
          only I and II are false.
                                           (2)
     (3)
          only I and III are false.
                                           (4)
                                                 only II and IV are false.
43.
     Which of the following statement(s) is/are TRUE with regard to software testing?
           Regression testing technique ensures that the software product runs correctly after
           the changes during maintenance.
           Equivalence partitioning is a white-box testing technique that divides the input
     II.
           domain of a program into classes of data from which test cases can be derived.
     (1)
           only I
                                           (2)
                                                 only II
     (3)
          both I and II
                                           (4)
                                                 neither I nor II
44.
     Which of the following are facts about a top-down software testing approach?
           Top-down testing typically requires the tester to build method stubs.
     II.
           Top-down testing typically requires the tester to build test drivers.
     (1)
           only I
                                            (2)
                                                 Only II
                                                 Neither I nor II
          Both I and II
                                           (4)
     (3)
```

45.		descrip	otions										
	$\mathbf{List} - \mathbf{I}$				List – II								
	I.	Vers	sion		A.	An inst		f a	system	that is	s distrib	outed to	•
	II.	Rele	ease		B.		r insta	nces,	but	designe	•	identical different	
	III.	Vari	ant		C.	hardware/software configurations. An instance of a system that differs, in some way, from other instances.							
	Cod	PG •				mom our	or motal	.1005.					
	Cou	I	II	III									
	(1)	В	C	A									
	` ′	C		B									
	(2)		A										
	(3)	C	В	A									
	(4)	В	A	C									
46.	assig salar teste	gned t ry of t er ₹ 5 th. W	to thing the area of the area	s proj chitec per of the 00	ect co t is ₹ month	imated at onsisting 80,000 pe n. The av ving repre	of an a er month verage p	rchited n, the joroduce e proj ₹ 2	ct, two progran tivity f	program nmer ₹ 6 for the toost of the	nmers, a 50,000 pe eam is 8	and a tes er month 8 FP per	ter. The and the
47.	Complete each of the following sentences in List $-I$ on the left hand side by filling in the word or phrase from the List $-II$ on the right hand side that best completes the sentence : List $-II$ List $-III$												
	I.	Dota	·····in			or von	hovo	٨			20		
	1.			_		er you tem is c		A.	Softwa	are testii	ıg		
	II.			_		er you ght is c		В.	Softwa	are verif	ication		
	III.	defe that	cts o	ating or pro	the ovidin	process existence ag confic appear to	e of lence	C.	Softwa	are debu	gging		
	IV.			ng the		process se of a d		D.	Softwa	are valid	lation		
	Cod	les:											
	(1) (2)	I B B	II D D	III A C	IV C A								
	(3)	D	В	C	A								
	(4)	D	В	A	C								
_	(+)	ע	ט	17									

48.	A software company needs to develop a project that is estimated as 1000 function points and is planning to use JAVA as the programming language whose approximate lines of code per function point is accepted as 50. Considering $a = 1.4$ as multiplicative factor, $b = 1.0$ as exponention factor for the basic COCOMO effort equation and $c = 3.0$ as									
	mult	tiplica ation,	ative	factor oxima	d =	0.33 as exponous long does the	enti	COCOMO effort equation and c = 3.0 a on factor for the basic COCOMO duration oject take to complete? 12.2 months		
	(3)		2 mon				(2)	10.2 months		
49.	cons	sists (of 32 ely:	page	-		_	with 512 bytes page size. Physical memory required in logical and physical address are		
	(1)		and 15 and 14				(2) (4)	14 and 29 16 and 32		
5 0	` /				:41-		` /			
50.				-		1/O requests or 15, 44, 110, 34,		following cylinders in their arriving order:		
	The num	disk ber (head of cy	is ass linder	umed s. To	to be at cylind	ler 2 cyl	3 and moving in the direction of decreasing inders in the disk is 150. The disk head is:		
	(1)	172		.5 ~ 0.		0 0	(2)	173		
	(3)	227	7			((4)	228		
51.	Mate	ch the	e follo	wing	for U	nix file system	:			
			st – I					List – II		
	a.	Boo	ot bloo	ck	i.	Information a inode list etc.		t file system, free block list, free		
	b.	Sup	er blo	ock	ii.	Contains ope and data files		ng system files as well as program		
	c.	Ino	de blo	ock	iii.			ogram and partition table.		
	d.	Dat	a bloc	ck	iv.			for every file in the file system. are stored here.		
	Cod	les:								
		a	b	c	d					
	(1)	iii	i	ii	iv					
	(2)	iii	i	iv	ii					
	(3)	iv ·	iii 	ii ·	i 					
	(4)	iv	iii	i	ii					
52.	Som					-	•	of a process are:		
	a.					by an individua	_			
	b. Weight assigned to a user or group of users.									
	c. Processor utilization by a user or group of processes In fair share scheduler, priority is calculated based on:									
					_	=				
	(1)		y (a) a				(2) (4)	only (a) and (c)		
	(3)		(b) aı	nu (C)		((4)	only (b) and (c)		
JA-()8 7 -1′	7					11	Paper-II	I	


- **53.** One of the disadvantages of user level threads compared to Kernel level threads is
 - (1) If a user level thread of a process executes a system call, all threads in that process are blocked.
 - (2) Scheduling is application dependent.
 - (3) Thread switching doesn't require kernel mode privileges.
 - (4) The library procedures invoked for thread management in user level threads are local procedures.
- **54.** Which statement is not correct about "init" process in Unix?
 - (1) It is generally the parent of the login shell.
 - (2) It has PID 1.
 - (3) It is the first process in the system.
 - (4) Init forks and execs a 'getty' process at every port connected to a terminal.
- 55. Consider following two rules R1 and R2 in logical reasoning in Artificial Intelligence (AI):
 - R1: From $\alpha \supset \beta$

$$\frac{\text{and }\alpha}{\text{Inter }\beta}$$
 is known as Modus Tollens (MT)

R2: From $\alpha \supset \beta$

$$\frac{\text{and} \ \ \, \beta}{\text{Inter} \ \ \, \alpha}$$
 is known as Modus Ponens (MP)

- (1) Only R1 is correct.
- (2) Only R2 is correct.
- (3) Both R1 and R2 are correct.
- (4) Neither R1 nor R2 is correct.
- **56.** Consider the following AO graph:

h = 42 h = 22 h = 24

Which is the best node to expand next by AO* algorithm?

(1) A

(2) B

(3)

- (4) B and C
- **57.** In Artificial Intelligence (AI), what is present in the planning graph?
 - (1) Sequence of levels
- (2) Literals

(3) Variables

- (4) Heuristic estimates
- **58.** What is the best method to go for the game playing problem?
 - (1) Optimal Search

(2) Random Search

(3) Heuristic Search

- (4) Stratified Search
- **59.** Which of the following statements is true?
 - (1) The sentence S is a logical consequence of $S_1, ..., S_n$ if and only if $S_1 \wedge S_2 \wedge ... \wedge S_n \rightarrow S$ is satisfiable.
 - (2) The sentence S is a logical consequence of $S_1, ..., S_n$ if and only if $S_1 \wedge S_2 \wedge ... \wedge S_n \rightarrow S$ is valid.
 - (3) The sentence S is a logical consequence of $S_1, ..., S_n$ if and only if $S_1 \wedge S_2 \wedge ... \wedge S_n \wedge \longrightarrow S$ is consistent.
 - (4) The sentence S is a logical consequence of $S_1, ..., S_n$ if and only if $S_1 \wedge S_2 \wedge ... \wedge S_n \wedge S$ is inconsistent.

60.		first order logic (Fo	OL) statement (($R \lor Q$	$(P \lor \neg$	\(\bigcap\) (Q)) is equivalent to which of the						
	(1)	_	$\vee \square Q) \wedge (R \vee P))$								
		$((R \lor Q) \land (P \lor \neg$									
			$(R \lor P)$								
			$\square Q) \wedge (\square R \vee P))$								
61.		en the following two	-, , , , , , , , , , , , , , , , , , ,								
	A.			context fre	e language, but not linear.						
	B.				stic context free language.						
			options is correct?		one comone nee ianguage.						
	(1)	Both (A) and (B)	*	Both (A)	and (B) are true.						
	(3)	(A) is true, (B) is	false. (4)	(A) is fal	lse, (B) is true.						
62.			pairs have different ex	xpressive p	power?						
	(1)	Single-tape-turing	machine and multi-d	imensiona	l turing machine.						
	(2)	Multi-tape turing	machine and multi-dia	mensional	turing machine.						
	(3)	Deterministic pus	h down automata and	non-deterr	ninistic pushdown automata.						
	(4)	Deterministic fini	te automata and Non-	determinis	tic finite automata						
63.		_	statements is false?								
	(1)		sitive language is recu								
	(2)	_	•	•	numerable is countable.						
	(3) The family of recursively enumerable languages is closed under union.										
	(4)	The families of rec	ursively enumerable an	d recursive	languages are closed under reversal.						
64.	Let	C be a binary linear	code with minimum	distance 2t	t + 1 then it can correct upto						
		of error.									
	(1)	t+1	(2)	t							
	(3)	t-2	(4)	$\frac{t}{2}$							
65.	A t-	error correcting q-n	ary linear code must s	atisfy:							
	M_{\perp}^{Σ}	$\sum_{i=1}^{n} (q-1)^{i} \leq X$	•	·							
	-	:0 ·· / ere M is the number	of code words and X	ic							
	(1)	q ⁿ	(2)								
	(3)	q ⁻ⁿ	(4)	q ^{-t}							
66.	` ′	-	` '	-	MV. *						
υυ.	(a)	Names of some of the Operating Systems are given below: (a) MS-DOS (b) XENIX (c) OS/2									
	` '		` '	` '	ovide multiuser facility.						
	(1)	(a) only	(2)	(a) and (
	(3)	(b) and (c) only	` '	(a), (b) a	· · · · · · · · · · · · · · · · · · ·						
67.	` ′	n the given data bel		(/, (-/							
		o a a b b a a b									
			wing is not a word i	in the dict	ionary created by LZ-coding (the						
		al words are a, b)?	_		· · · · · · · · · · · · · · · · · · ·						
	(1)	a b	(2)	b b							
	(3)	b a	(4)	b a a b							
JA-()87-1 7	7	13		Paper-III						

- **68.** With respect to a loop in the transportation table, which one of the following is not correct?
 - (1) Every loop has an odd no. of cells and atleast 5.
 - (2) Closed loops may or may not be square in shape.
 - (3) All the cells in the loop that have a plus or minus sign, except the starting cell, must be occupied cells.
 - (4) Every loop has an even no. of cells and atleast four.
- **69.** At which of the following stage(s), the degeneracy do not occur in transportation problem ? (m, n represents number of sources and destinations respectively)
 - (a) While the values of dual variables u_i and v_i cannot be computed.
 - (b) While obtaining an initial solution, we may have less than m + n 1 allocations.
 - (c) At any stage while moving towards optimal solution, when two or more occupied cells with the same minimum allocation become unoccupied simultaneously.
 - (d) At a stage when the no. of +ve allocation is exactly m + n 1.
 - (1) (a), (b) and (c)

(2) (a), (c) and (d)

(3) (a) and (d)

- (4) (a), (b), (c) and (d)
- **70.** Consider the following LPP:

Min. Z =
$$x_1 + x_2 + x_3$$

Subject to $3x_1 + 4x_3 \le 5$
 $5x_1 + x_2 + 6x_3 = 7$
 $8x_1 + 9x_3 \ge 2$,
 $x_1, x_2, x_3 \ge 0$

The standard form of this LPP shall be:

(1) Min. Z =
$$x_1 + x_2 + x_3 + 0x_4 + 0x_5$$

Subject to $3x_1 + 4x_3 + x_4 = 5$;
 $5x_1 + x_2 + 6x_3 = 7$;
 $8x_1 + 9x_3 - x_5 = 2$;
 $x_1, x_2, x_3, x_4, x_5 \ge 0$

(2) Min. Z =
$$x_1 + x_2 + x_3 + 0x_4 + 0x_5 - 1(x_6) - 1(x_7)$$

Subject to $3x_1 + 4x_3 + x_4 = 5$;
 $5x_1 + x_2 + 6x_3 + x_6 = 7$;
 $8x_1 + 9x_3 - x_5 + x_7 = 2$;
 x_1 to $x_7 \ge 0$

(3) Min. Z =
$$x_1 + x_2 + x_3 + 0x_4 + 0x_5 + 0x_6$$

Subject to $3x_1 + 4x_3 + x_4 = 5$;
 $5x_1 + x_2 + 6x_3 = 7$;
 $8x_1 + 9x_3 - x_5 + x_6 = 2$;
 x_1 to $x_6 \ge 0$

(4) Min. Z =
$$x_1 + x_2 + x_3 + 0x_4 + 0x_5 + 0x_6 + 0x_7$$

Subject to $3x_1 + 4x_3 + x_4 = 5$;
 $5x_1 + x_2 + 6x_3 + x_6 = 7$;
 $8x_1 + 9x_3 - x_5 + x_7 = 2$;
 x_1 to $x_7 \ge 0$

Let R and S be two fuzzy relations defined as:

$$R = \begin{bmatrix} y_1 & y_2 & z_1 & z_2 & z_3 \\ 0.6 & 0.4 \\ x_2 & 0.7 & 0.3 \end{bmatrix} \text{ and } S = \begin{bmatrix} y_1 & 0.8 & 0.5 & 0.1 \\ y_2 & 0.0 & 0.6 & 0.4 \end{bmatrix}$$

Then, the resulting relation, T, which relates elements of universe x to the elements of universe z using max-min composition is given by:

(1)
$$T = \begin{bmatrix} x_1 & z_2 & z_3 \\ 0.4 & 0.6 & 0.4 \\ x_2 & 0.7 & 0.7 & 0.7 \end{bmatrix}$$
 (2) $T = \begin{bmatrix} x_1 & z_2 & z_3 \\ 0.4 & 0.6 & 0.4 \\ x_2 & 0.8 & 0.5 & 0.4 \end{bmatrix}$

(2)
$$T = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \begin{bmatrix} 0.4 & 0.6 & 0.4 \\ 0.8 & 0.5 & 0.4 \end{bmatrix}$$

(3)
$$T = \begin{bmatrix} z_1 & z_2 & z_3 \\ 0.6 & 0.5 & 0.4 \\ 0.7 & 0.5 & 0.3 \end{bmatrix}$$
 (4) $T = \begin{bmatrix} z_1 & z_2 & z_3 \\ 0.6 & 0.5 & 0.5 \\ x_2 & 0.7 & 0.7 & 0.7 \end{bmatrix}$

(4)
$$T = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \begin{bmatrix} 0.6 & 0.5 & 0.5 \\ 0.7 & 0.7 & 0.7 \end{bmatrix}$$

A neuron with 3 inputs has the weight vector $[0.2 - 0.1 \ 0.1]^T$ and a bias $\theta = 0$. If the input 72. vector is $X = [0.2 \ 0.4 \ 0.2]^T$ then the total input to the neuron is :

(1) 0.20 (2) 1.0

(3) 0.02 (4) -1.0

Which of the following neural networks uses supervised learning? **73.**

- Multilayer perceptron (A)
- Self organizing feature map (B)
- (C) Hopfield network
- (1) (A) only

(B) only

(A) and (B) only

(4) (A) and (C) only

74. Unix command to change the case of first three lines of file "shortlist" from lower to upper

- tr '[a-z]' (A-Z]' shortlist | head-3(1)
- (2) \$ head-3 shortlist | tr '[a-z] | (A-Z) |
- tr head -3 shortlist '[A Z]' '[a z]'(3)
- \$ tr shortlist head -3 '[a-z]' '[A-Z]'

Match the following vi commands in Unix: **75.**

List - I

List – II

- saves the file and quits editing mode : w i. a.
- b. : x ii. escapes unix shell
- saves file and remains in editing mode c. : q iii.
- d. : sh quits editing mode and no changes are saved to the file iv.

Codes:

- (1) ii iii i iv
- (2) iii i iv
- ii iv i (3) iii
- (4) iii iv

Space For Rough Work